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Abstracts 
Presents a new methodology for modeling technical systems (TS), a model of which is represented by a 

vector problem of mathematical programming (VPMP). The model is designed for evaluation and selection of 

necessary tech-nical specifications (criteria) and to identify the relevant parameters of the TS. A theoretical study and 

construct a mathematical model of the technical system as a vector programming problem whose solution is based on 

the normaliza-tion criteria principle guaranteed result. Problem is solved with equivalent cri-teria. Modeling 

methodology is illustrated by a numerical example of a model of the TS, in the form of a vector problem of nonlinear 

programming is imple-mented in Matlab.  

 

 Keywords: 

Introduction 

Progress in the development of most branches of industry connected with the creation of new technical 

(engineering) systems (TS), which meets the latest achievements of science and technology. Created TS during 

operation must continually modernize, and, as they become obsolete, replaced by a more ad-vanced products. These 

problems put before design organizations the need to accelerate and increase the volume of design works on creation 

of new TS. 

 

Issues to accelerate the design of TS, improvement of their quality, reliability stimulated: creation of mathematical 

models adequately describing the operation of the technical system; continuous improvement of systems of processing 

of the information related to the design of TS. Therefore, the problem of mathematical modeling of technical systems, 

as an integral part of computer-aided design (CAD), great attention is paid in Russia [1-5] and abroad in theoretical 

[6-7] and applied aspects [8-9]. 

 

In the study and modeling of new technical objects, systems, a model of which is represented by a vector problem of 

mathematical programming [10], it is necessary to give estimates of results of modeling and making optimal decisions 

based on them [10, 11]. This raises the problem of assessing results as the equivalent criteria, and in particular 

importance (priority) criterion. On the solution of these problems directed this work. 

 

The purpose of this work – theoretical justification, methodology of constructing models and mathematical modeling 

of technical system in the form of the vector problem of mathematical programming (VPMP), and also its decision at 

equivalent criteria. 

 

For the realization of this goal it is shown the model of technical system, which is represented by a vector problem of 

mathematical programming. Theoretical substantiation and building of algorithm of the decision of VPMP  based on 

normalization of the criteria, the principle guaranteed result. Modeling methodology is illustrated by a numerical 

example of a model TS, in the form of a vector problem of nonlinear programming is implemented in Matlab [12]. 

 

Mathematical model of the technical system 
The problem of choosing optimal parameters of technical systems on the functional characteristics associated 

with the release of high quality products. This problem always arises in the study, analysis and design of technical 

systems in CAD. 
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где х
min

j , х
max

j , jN - нижний и верхний пределы изменения вектора параметров технической системы. 

Considered a technical system, the functioning of which depends on the N - structural parameters set1 Х={х1 

х2 … хN}, where N - number of parameters, each of which lies within specified limits: 

х
min

j  хj  х
max

j , j= N,1 , or XminXXmax,                                                           (1)  

where х
min

j , х
max

j , jN - lower and upper limits of variation of the parameter vector of the technical system 

Result functioning technical system defined by the set K To technical characteristics of  fk(X), k=
K,1

K,1 ,  which 

are functionally dependent on the design parameters of the TS Х={хj, j= N,1 }, together they represent a vector 

function:  

F(X) = (f1(X)  f2(X) … Kf (X))T.                                
   

(2)  

Set of characteristics (criteria) is divided into two subsets K1 and K2: К=K1∪K2.  

K1 - a subset of the technical characteristics, the numerical values which it is desired to receive as it is possible 

above: 

fk(X) max , k= 11,K .  

K2 - is a subset of the technical characteristics, the numerical values which it is desirable to receive as it is 

possible below: 

fk(X) min , k= 1 1,K K ,  K2≡ 1 1,K K  

Mathematical model of a technical system solving as a whole a problem of a choice of optimal design solutions 

(choice of the TS optimum parameters) can be represented as a vector problem of mathematical programming: 

Opt F(X) = {max F1(X) = {max fk(X), k =1, K
K,1

1},                                     (3)      

                    min F2(X) = {min fk(X), k =1, K 2}},                                     (4) 

G(X)0,                                                                                                       (5) 

x
min

j  xj  x
max

j , j = N,1
N,1

,                                                                          (6) 

where X - a vector of controlled variables (design data of the TS) from (1); F(X)={fk(X), k=1, K
K,1

}  - the vector criterion 

which everyone component submits the TS characteristic from (2), functionally depending on a vector of variables X; 

in (5) G(X)=(g1(X)  g2(X) … gM (X))T – a vector function of the constraints imposed on functioning of the TS. 

They are determined going in it technological, physical, and similar processes and can be presented functional 

constraints, for example, f
min

k  fk(X)  f
max

k , k=1, K . 

It is supposed that the functions fk(X), k=1, K  are differentiated  and convex, gi(X), i=1,M  continuous and 

given constraints (5) - (6) set of admissible points S isn't empty and represents a compact: 

 S={XRN | G(X)0, XminXXmax}≠∅.                                                          (7) 

Relations (3)-(6) form a mathematical model of the TS. It is required to find such vector of the ХoS parameters 

at which everyone a component the vector - function the F1(X)={fk(X), k=
K,1

1, K 1} accepts the greatest possible value, 

and the vector - function F2(X)={fk(X), k=1, K
K,1

2} accepts a minimum value. 

To solve this class VPMP in this article uses the methods based on the principle of normalization criteria and 

the principle of guaranteed result [10, 11]. They allow you to decide when VPMP equivalent criteria and priority for 

a given criterion. In this article the main attention is paid to TS modeling at equivalent criteria. 

 

 

 

                                                 
1 Another way to write the vector Х={хj, j= N,1

N,1

}. 

http://www.ijesrt.com/


[Mashunin, 3(9): September, 2014]   ISSN: 2277-9655 
                                                                                         Scientific Journal Impact Factor: 3.449 

         (ISRA), Impact Factor: 2.114 
  

http: // www.ijesrt.com                 (C)International Journal of Engineering Sciences & Research Technology 
[86] 

 

 

Decision vector problems with equivalent criteria 
Theoretical Foundations of solutions of vector optimization problems 

 

For development of methods of the solution of problems of vector optimization we will enter definitions: 

• relative estimate; 

• equivalence of criteria in VPMP (axiom); 

• relative level for all criteria; 

• the principle of an optimality of the solution of problems of vector optimization at equivalent criteria, and 

related theorems. For more details see [10, 11]. 

Definition 1. Criteria in VPMP (3)-(6) are normalized if the following equality is carried out: 

k(X) =
0

0

k

*

k

kk

ff

 (X) - ff


, k  K,                                            (8) 

where k(X), kK is the relative estimate of a point XS  k-th criterion; fk(X) - k-th criterion at the point XS; f
*

k  - 

value of the k-th criterion at the point of optimum X
*

k , obtained in VPMP (3)-(6) of individual  k-th criterion; f
0

k  is 

the worst value of the k-th criterion (antioptimum) at the point X
0

k  (Superscript 0 - zero) on the admissible set S in 

VPMP (3)-(6); the task at max (3), (5), (6) the value of f
0

k  is the lowest value of the k-th criterion f
0

k =
SX

min fk(X) 

kK1 and task min   f
0

k  is the greatest:  f
0

k =
SX

max fk(X) kK2. 

The relative estimate of the k(X), kK is first, measured in relative units; secondly, the relative assessment 

of the k(X) kK on the admissible set is changed from zero in a point of  X
0

k  : 

kK 
o
kXX

lim k(X)=0, 

to the unit at the point of an optimum of X
*

k : 

 

kK
*
kXX

lim


k(X)=1 i.e.:  

 

kK  0k(X) 1, XS -                                                                                (9) 

this allows the comparison criteria, measured in relative units, among themselves by joint optimization. 

Definition 2 (Axiom 1. About equality and equivalence of criteria in an admissible point of VPMP) 

In VPMP two criteria with the indexes kK, qK shall be considered as equal in ХS point if relative estimates 

on k-th and q-th to criterion are equal among themselves in this point, i.e. k(X) = q(X), k, q  K. 

We will consider criteria equivalent in VPMP if in XS point when comparing in the numerical size of relative 

estimates of k(X), k= K,1 , among themselves, on each criterion of fk(X), k= K,1 , and, respectively, relative estimates 

of k(X), isn't imposed conditions about priorities of criteria. 

Definition 3. The relative  level in VPMP is the bottom assessment of a point of XS among all relative 

estimates of k(X), k = K,1 , i.e.  an essence bottom bending around the k(X) functions: 

XS    k(X), k = K,1 ,                                                         (10) 

the bottom level for performance of a condition (10) in an admissible point is defined by a formula 

XS   =
Kk

min k(X).                                                                 (11) 

The relations (10) and (11) are interrelated and are moving further from operations define min(max) to the 

restrictions and vice versa. 

Introduction level   which allows to combine all the criteria VPMP one numeric characteristics and produce 

over her certain operations, thus doing these operations on all the criteria, measured in relative units. The level  is 
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functionally depends on the  XS - changing it, you can change and what . From here can be formulated and the rule 

of finding the optimal solution. 

Definition 4. (Principle of an optimality). 

The vector problem of mathematical programming at equivalent criteria is solved, if the point of XoS and a 

maximum level of o (the top index o - optimum) among all relative estimates such that is found 

о = 
SX

max
Kk

min k(X).                                                                      (12) 

Using interrelation of expressions (10) and (11), we will transform a maximine problem (12) to an extreme 

problem 

o = 
SX

max ,                                                                                     (13) 

  k(X), k= K,1 .                                                                           (14) 

The resulting problem (13)-(14) let's call the -problem. 

-problem (13)-(14) has (N+1) dimension, as a consequence of the result of the solution of -problem (13)-

(14) represents an optimum vector of XоRN+1, (N+1) which component an essence of the value of the o, i.e. Xo={x
o

1 , x
o

2 , ..., x
o

N , x
o

N 1 },  thus x
o

N 1 = o, and (N+1) a component of a vector of Xo selected in view of its specificity. 

The received a pair of  {o, Xo}=Xо characterizes the optimum solution of -problem (13)-(14) and according 

to VPMP (3)-(6) with the equivalent criteria, solved on the basis of normalization of criteria and the principle of the 

guaranteed result. We will call in the optimum solution of Xо={Xo, o}, Xo - an optimal point, and o - a maximum 

level. 

Theorem 1. (The theorem of the most contradiction criteria in VPMP with equivalent criteria). 

In convex VPMP at the equivalent criteria, solved on the basis of normalization of criteria and the principle of 

the guaranteed result, in an optimum point of Xo={o, Xo} there is always two criteria - denote their indexes qK, 

pK (which in a sense are the most contradiction of the criteria k = K,1 ), for which the equality: 

o = q(X
o) = p(X

o), q, p  K, X  S,                                           (15) 

and other criteria are defined by inequalities: 

o  k(X
o)  k  K, q  p  k.                                                      (16) 

Theorem 2. (The theorem about Pareto optimality of the solutions of VZMP at equivalent criteria). 

In a convex vector problem of mathematical programming at equivalent criteria a point of an optimum Xo, 

received on the basis of normalization of criteria and the principle of guaranteed result, is optimum across Pareto, and 

if criteria are continuously differentiated, such point only one. [10, 11]. 

 

Algorithm for solving of vector optimization problems with equivalent criteria 

The algorithm of the solution of VPMP (3)-(6) with equivalent criteria is executed according to the principle 

of an optimality and presented in the form of a number of steps. 

Step 1. The problem (3)-(6) by each criterion separately is solved, i.e. for k  K1 is solved at the maximum, 

and for k  K2 is solved at a minimum. As a result of the decision we will receive: 

X
*

k  - an optimum point by the corresponding criterion, k= K,1 ; 

f
*

k =fk(X
*

k ) – the criterion size k-th in this point, k= K,1 . 

Step 2. We define the worst value of each criterion on S: f
0

k , k= K,1 . For what the problem (3)-(6) for each 

criterion of k= 1,1 K  on a minimum is solved:  

f
0

k =min fk(X), G(X)  B, X  0, k= 1,1 K . 

The problem (3)-(6) for each criterion on a maximum is solved:  

f
0

k  = max fk(X), G(X)  B, X  0, k= 2,1 K . 

As a result of the decision we will receive: X
0

k ={xj, j= N,1 } - an optimum point by the corresponding criterion, 

k= K,1 ; f
0

k =fk(X k

o
) – the criterion size k-th a point, X

0

k , k= K,1 . 
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Step 3.  The analysis of a set of points, optimum across Pareto, for this purpose in optimum points of  X
*

={X
*

k , 

k= K,1 } are defined sizes of criterion functions of F(X*)={fq(X
*

k ), q= K,1 , k= K,1 } and relative estimates  

(X
*

) ={q(X k

*
), q= K,1 , k= K,1 },  k(X) =

o

k

*

k

o

kk

ff

 (X) - ff


, k  K: 

F(X*)=

)(X..., f),(Xf

...

),(X..., f),(Xf

*

kk

*

k

*

k

*

1

111

, (X*)=

)(Xλ...,),(Xλ

...

),(Xλ,...),(Xλ

*

kk

*

k

*

k

*

1

111

.                    (17) 

As a whole on a problem of accordance with (9)kК  the relative assessment of k(X), k= K,1   lies within 0  

k(X)  1, k  К . 

Step 4. Creation of the -problem. 

Creation of -problem is carried out in two stages: initially built the maximine problem of optimization with 

the normalized criteria which at the second stage will be transformed to the standard problem of mathematical 

programming called -problem. 

For construction maximine a problem of optimization we use definition - relative level (11) XS   =
Kk

min

k(X). 

The bottom  level is maximized on XS, as a result we will receive a maximine problem of optimization with 

the normalized criteria. 

o = 
x

max
k

min  k(X), G(X)  B, X  0.                                                       (18) 

At the second stage, using interrelation (10) and (11), we will transform a problem (18) to a standard problem 

of mathematical programming: 

o = max ,                                   o = max ,                                              (19) 

 - k(X)  0, k = K,1 ,            - 
o

k

*

k

o

kk

ff

 (X) - ff


 0, k = K,1 ,               (20) 

G(X)  B, X  0,                             G(X)  B, X  0,                                     (21) 

where the vector of unknown of X has dimension of N+1: X={, x1, … , xN}. 

Step 5. Solution of -problem. 

-problem (19)-(21) is a standard problem of convex programming and for its decision standard methods are 

used. 

As a result of the solution of -problem it is received: 

Xo={o, Xo} - an optimum point; 

fk(X
o), k= K,1  - values of the criteria in this point; 

k(X
o) =

o

k

*

k

o

k

o

k

ff

 ) - f(Xf


, k= K,1  - sizes of relative estimates; 

o - the maximum relative estimates which is the maximum bottom level for all relative estimates of k(X
o),  or 

the guaranteed result in relative units, o guarantees that all relative estimates of k(X
o) more or are equal o in Xo 

point to o, k(X
o)o, k= K,1  or o  k(X

o), k= K,1 , Xo  S,                               (22) 

and according to the theorem the 2 point of Xo={o, x1, … , xN} is optimum across Pareto. 

 

Technology of research, creation of mathematical model of technical system and decision-making  
The methodology of process of construction of the TS mathematical model and decision-making on its basis is 

intended for the analysis and TS synthesis at a design stage and operation. The main attention is paid, first, to creation 

of the TS model and methods of the solution of VPMP, secondly, a place of these models and methods in problems 
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of design of technical (engineering) systems. The flowchart of methodology is submitted in fig. 1 and described, how 

sequence of a number of steps (blocks). 

Block 0. The specification on developed products where the purposes and requirements to technical systems 

are formulated is formed. 

Block 1. For research of the physical processes proceeding in the TS, and creation of mathematical models of 

such processes fundamental laws of physics are used: modeling of magnetic, temperature fields; conservation laws of 

energy, movement, etc. 

At the same stage for the solution of the problems which are cornerstone of studied physical processes, 

numerical methods are developed. As a rule, modeling and calculations are carried out by means of the software 

developed for this purpose and computer facilities. Then the software is tested for adequacy to real physical data. 

If the main physical processes proceeding in the TS are known, and functional dependence of each 

characteristic and restrictions on the TS parameters is known further, such situation is called "modeling in the 

conditions of definiteness". If physical processes in the TS are insufficiently studied, such situation is called "modeling 

in the conditions of uncertainty". In this case, construction of experimental (regression) models associated with the 

analysis of input and output data, see [5]. 

Block 2. The full list of all functional characteristics of technical systems and parameters on which these 

characteristics depend is formed. Their verbal description is given. 

Block 3. The technical and information interrelation of all TS components is established, i.e. the structure is 

under construction. Here the problem of a choice of the best (in any sense) TS structures is solved, i.e. the problem of 

structural optimization [3] is carried out. 

Block 4. TS mathematical model formation. 

It includes four stages. 

Definition of the purposes and indicators of functioning of the TS. 

Quality of functioning of the TS by any is defined by a set of technical (output) characteristics which represent 

a quantitative measure of reflection of requirements to TS properties. For electronic schemes such characteristics are: 

output power, speed, accuracy assessment, dimensions, etc. For engines - the output power, speed, efficiency, etc. We 

will designate set of all vector characteristics a set " К", and an index k = K,1 . 

Identification of a vector of the TS variables. 

The technical system in a statics is investigated. Major factors and parameters which remain constants for the 

studied period of time are identified. The variable parameters which size it is desirable to determine and which size 

can change in the course of design are identified. Them also call operated parameters or design parameters. They are 

in turn subdivided into internal and external parameters. For electronic schemes internal parameters are: resistance, 

capacities, inductance, coefficients of strengthening of transistors, etc. For mechanical systems, for example, engines: 

combustion chamber volume, piston stroke, their quantity, etc. External parameters are the factors connected with 

environment (for example, temperature), power supplies, etc. 

These parameters usually also are subject to definition. 

We will designate a vector of design data (a vector of variables) the TS through Х = {хj, j = N,1 }, where N - 

a set of indexes (N- their number) variables. Limits of change of a vector of variables come to light: 

х
min

j  хj  х
max

j , j= N,1 , or XminXXmax,  

where х
min

j , х
max

j , jN, bottom and top limits of change of a vector of variables. These relations are called 

parametric restrictions 

Formation of a vector of criteria of the TS. 

The criterion is a measure of a quantitative estimation of functional dependence of a vector of variables X from 

each output characteristic of k= K,1 . The set of functional dependences of characteristics represents vector 

criterion:  

F(X) = {fk(X), k = K,1 }, 

where K(K) is the set of (number) indexes of criteria of the TS. 
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 Block 0. Formation of the purposes and requirements to the 

technical system (TS) 
   

 Block 1. Research of physical processes in the TS 
   

 Block 2. Functional and information description 
   

 Block 3. Structural optimization of the TS (if necessary) 
   

 Block 4. TS mathematical model formation in the form of 

VPMP: 

Opt F(X)={max F1(X), min  F2(X)},     (1)             

G(X)  0,    XminXXmax .                     (2) 
   

 Block 5. Decision-making on the basis of TS (1)-(2) model at 

equivalent criteria.  

Result: Xo={o, Xo}; fk(X
o); k(X

o), k= K,1  

  Methods of the solution of 

VPMP at equivalent criteria 

(Section: 3.2) 
 

 
 

                        Analysis 

          Whether satisfy results  decisions  

Yes        of the decision-maker? 

 

                                                        No  

 Block 6. Decision-making on the basis of TS (1)-(2) model at 

the set priority of criterion: Xo={o, Xo}; p
q

k *k(X
o), k= K,1 ; o 

  Methods the solution of VPMP 

at the set priority of criterion 

(Article 2) 
   

 No                   Analysis 

Whether satisfy results of the decision  

               of the decision-maker?  

 

                                                         Yes  

 Block 7. Final decision-making. Results: 

Xo={o, Xo}; fk(X
o); p

q

k *k(X
o), k= K,1 ; o 

   

 Block 8. System of the automated design (CAD). Development 

of a control sample. 
   

 Block 9. Trial operation 
   

                          Analysis 
results of trial operation: 

Хto =Хo- Хto,  fk(Хto), k= K,1  

  Negative result:                Positive result:  

Хto≫ 0                                Хto0               

 Block 11. Commercial operation 

END 

 
Fig. 1. The flowchart of process of design and TS mathematical model place in decision-making. 

 

 

 

 

http://www.ijesrt.com/


[Mashunin, 3(9): September, 2014]   ISSN: 2277-9655 
                                                                                         Scientific Journal Impact Factor: 3.449 

         (ISRA), Impact Factor: 2.114 
  

http: // www.ijesrt.com                 (C)International Journal of Engineering Sciences & Research Technology 
[91] 

 

Optimization on one of characteristics (criterion) led to deterioration of other characteristics of the TS, as a result the 

chosen design decision was insolvent. This circumstance also constrained wide use of methods of optimization in the 

analysis and TS synthesis. The solution of a question, in our opinion, is consolidated to creation of mathematical 

model which would be adequate to the TS, i.e. would consider all characteristics of the TS at its functioning at the 

same time. 

The definition of functional dependencies between constraints and parameters of the TS. 

Are investigated and imposed on functioning of the TS of restriction of four types: 

the restrictions which are put forward by the specification on creation of the TS; 

technological restrictions; 

the restrictions connected with physical processes, proceeding in the TS; 

restrictions on functioning the TS connected with environment. 

Functional dependence of parameters among themselves, and, according to technical requirements to entrance 

and output parameters (6) is established: XminXXmax -  parametrical restrictions. 

Taking into account the admissible range of change of variables of restriction in a symbolical form it is possible 

to present in the form of inequalities (5):  G(X)≤0 or (g1(X)≤0  g2(X)≤0 … gM (X)≤0)T,  where М(M) - a set (number) 

of restrictions of the TS. 

Let part of characteristics of fk(Х), k = K,1 1, K1K, on quantity it is desirable to receive as much as possible (i.e. 

the corresponding criteria are maximized), and part of  fk(Х), k = 1, K 2, K2K are minimized. Taking into account 

these requirements the mathematical model solving as a whole a problem of a choice of the optimum design decision 

(a choice of the TS optimum parameters), it is possible to present in the form of a vector problem of mathematical 

programming, similarly (3)-(6) – Fig. 1, the block 4: 

Opt F(X) = {max F1(X) = {max fk(X), k =1, K
K,1

1},                   (23)    

min F2(X) = {min fk(X), k =1, K 2}},                                       (24) 

G(X)0,  x
min

j  xj  x
max

j , j = N,1
N,1

.                                         (25) 

We assume that the problem (23)-(25) belongs to the class of convex problems, and the set of admissible points of S 

presented by restrictions (26) isn't empty and represents a compact. From here it is possible to determine an optimum 

by any of criteria "К". VPMP (23)-(25) is the TS model in a statics, but such model can be used for research of dynamic 

processes for the small period of time [2]. 

Block 5.  Decision-making on the basis of TS (23)-(25) model at equivalent criteria.  

The made decision is defined by the solution of a vector problem (23)-(25) at equivalent criteria, i.e. lack of a 

priority on any criterion.  

Methods of the decision are based on normalization of criteria and the principle of the guaranteed result are 

presented in section 3.2. 

Result of the decision:  

Xo={o, Xo}; fk(X
o), k= K,1 ; k(X

o), k= K,1 ; o.                      (26) 

(Designations in section 3.2). 

The analysis of design parameters of Xo and characteristics of fk(X
o), k= K,1  technical system is made. If they meet 

requirements of the decision-maker, we go to block 8, otherwise the next block. 

  Decision-making on the basis of TS (23)-(25) model at the set priority of criterion.  

The decision received in the previous block is defined proceeding from equivalence of criteria of the TS. In actual 

practice the priority (preference) of TS any of criteria, for example, qK is usually imposed. The decision in this 

case gets out of a set of points of SqS, lying between points of Xo and X
*

q , qK. 

Methods of the decision are based on normalization of criteria, the principle of the guaranteed result and 

axiomatics of a priority of criterion in VPMP. 

The analysis of design data of Xo and characteristics of fk(X
o), k= K,1  technical system with a criterion priority is 

made. If they meet requirements of the decision-maker, the previous block is passed to the block 7, differently. 
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Block 7. Final decision-making at the set priority of criterion. Results: Xo={o, Xo}; fk(X
o), k= K,1 ; p

q

k *k(X
o), 

k= K,1 ; o                                       (27) 

determine parameters and characteristics of technical system. 

Block 8. Computer-aided design (CAD). 

On the basis of design parameters  of Xo by means of system of the automated design project documentation 

of the TS which functioning is defined by characteristics of fk(X
o), k= K,1  is formed. Built a prototype that is passed 

into pilot operation. 

Block 9. Trial operation (to). 

Block 10. By results of trial operation experimental data of design data Хto  and functional characteristics of 

fk(X
to), k= K,1  can be obtained. They are compared to the Хo parameters from mathematical model 

Хto =Хo - Хto,  fk(Хto), k= K,1 .                                                               (28) 

If deviations of  are close to zero: Хto≅ 0, TS is put into commercial operation. If deviations are considerable: 

Хto≫ 0, by results of trial operation the second stage of improvement of model begins. 

Block 11. Commercial operation. 

Applied part of modeling of the TS it is representable in the form of methodology of the solution of VPMP 

with a priority of criterion and we will show on test examples of the TS models realized in Matlab system. 

 

Adoption of the optimum decision on model of technical system 
We will consider model of technical system for which are known:  

• functional dependence of each characteristic (criterion) of kK (3)-(4) on a vector of design data (variables) 

of X={x1, x2}, the set of criteria K=4 is divided into two under sets - two criteria of max and two min; 

•  restrictions (5)-(6) which are functionally dependent on the same TS parameters.  

The model of technical system is presented by a vector problem of mathematical (nonlinear) programming: 

opt F(X)= 

{max F1(X)={max f1(X)  639+0.031x1 +0.0421x1
2 +0.039x2

2 ,                                              (29)   

              max f3(X)  402 - 0 .04x1   +0.04x1
2  +0.08x2

2},                             (30) 

  min F2(X) ={min f2(X) -506  +0. 71x1+528x2    -1.9x2
2,                                        (31) 

               min f4(X)  -803+0.203x1 +0.135x1
2  -0.09x1x2}},                         (32) 

при ограничениях  at restrictions 

      10000  f2(X)  -506 +0.71x1 +528x2-0.19x2
2  21000,                         (33) 

                                10x180, 15x270.                                                    (34) 

The methodology of modeling and adoption of the optimum decision in the annex to TS (29)-(34) model at 

equivalent criteria, is based on axiomatics, with use of normalization of criteria and the principle a maximine, we will 

present in the form of sequence of steps according to section 3.2. 

Step 1. The problem (29)-(34) by each criterion separately for the purpose of receiving points of private 

optimum 
*

kX  and 
* *( )k k kf f X , k=1,4  is solved. Each of them is a nonlinear problem of optimization and 

for its decision in Matlab system the function fmincon(…) is used. For example, for the first criterion the problem 

looks as follows: (29) (33), (34), the address to her will assume an air: 

[x1max,f1max]=fmincon('TehnSist_Krit1max',Xo,A,b,Aeq,beq,lb,ub,'TehnSist_Const',options)                                                            

(35) 

where in parentheses input parameters are given: 'TehnSist_Krit1max' – the subprogramme of definition of function 

(the first criterion) and its gradient,  
X

Xf k



 )(
, k = 1,4  on a Fortran; A, b, … – linear restrictions. 

% [The subprogramme "Calculation of 1 criterion - max"] the file: TehnSist_Krit1max 

function [f,G] = TehnSist_Krit1max(x); 

f=-(639+0.031*x(1)+0.0421*x(1).^2+0.039*x(2).^2); 

G=[-(0.031+0.0421*2*x(1));  

    -0.039*2*x(2)]; 
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% ["Restriction" Subprogramme] file:TehnSist_Const 

function [c,ceq,DC,DCeq]=TehnSist_Const(x) 

c(1)= (-506+0.71*x(1)+528*x(2)-1.9*x(2).^2)-21000; 

c(2)=-(-506+0.71*x(1)+528*x(2)-1.9*x(2).^2)+10000; 

DC=[0.71,            -0.071; 

   (528-1.9*2*x(2)), -(528-1.9*2*x(2))];             

  ceq=[];   DCeq=[];   

In square brackets output parameters in the form of a point of an optimum of x1max and size of criterion 

function of f1max in this point are specified.  

As a result of the solution of the problem (29), (33), (34) function (35) we will receive a point of an optimum of X
*

1

={80.0 48.5479} and the size of criterion of f
*

1 =-1003.4 in this point. Similarly by other criteria:  

f1(X)→max  X
*

1 ={x1=80.0, x2=48.5479}, f
*

1 = f1(X
*

1 ) =-1003.4;  

f2(X)→min  X
*

2 ={x1=12.7076, x2=21.55}, f
*

2 = f2(X
*

2 ) =1000;   

f3(X)→max  X
*

3 ={x1=80.0, x2= 49.4079},  f
*

3 = f3(X
*

3 )=-850.0912;  

f4(X)→min  X
*

4 ={x1=15.7512, x2=49.5421},  f
*

4 =f4(X
*

4 )=-836.7402.  

In fig. 1 the admissible set of points S formed by restrictions (34), points of private optimum is shown: X
*

1 , X

*

2 , X
*

3 , X
*

4 ; points of auxiliary optimum: X
o

12 , X
o

13 , X
o

34 , X
o

42 . All these points are united in a contour which presents 

to So  S - a set of points, optimum across Pareto. 

 
Fig. 1. An admissible set of points S tasks (29)-(34) and Pareto's great number, SoS in two-dimensional system of 

coordinates of x1 and x2. 
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Step 2. The worst size (anti-optimum) of each criterion on an admissible set of S is defined. For example, for 

the first criterion the appeal to  the problem (29), (33), (34) looks as follows:  

[x1min, f1min] =fmincon ('TehnSist_Krit1min', Xo, A, b, Aeq, beq, lb, ub, 'TehnSist_Const', options)                                                                               

(36) 

where 'TehnSist_Krit1min' – the subprogramme of definition of function (the first criterion) and its gradient, 
X

Xf k



 )(

, k = 1,4  on a Fortran. 

% [The subprogramme "Calculation of 1 criterion - min"] the file: TehnSist_Krit1min 

 function [f,G] = TehnSist_Krit1min(x); 

f = (639+0.031*x(1)+0.0421*x(1).^2+0.039*x(2).^2); 

G = [(0.031+0.0421*2*x(1));  

        0.039*2*x(2)]; 

As a result for each k=1,4  we receive points of private anti-optimum and size of criteria in them

( )o o

k k kf f X : 

f1(X)→ min X
o

1 ={x1=10.0, x2=21.5564}, f
o

1 =f1(X
o

1 )=661.64; 

f2(X)→ max X
o

2 ={x1=30.0543, x2=49.5122}, f
o

2 =f2(X
o

2 )=-21000.0; 

f3(X)→ min X
o

3 ={x1= 10.0, x2=21.5564},  f
o

3 =f3(X
o

3 )= 442.7743; 

f4(X)→ max X
o

4 ={x1=80.0, x2=45.4499},    f
*

4 = f4(X
*

4 )=250.1992. 

Step 3. The analysis of a set of points, optimum across Pareto, for this purpose in optimum points of X
*

={X
*

k

, k= 4,1 }  are defined sizes of criterion functions of F(X
*

)={fq(X k

*
), q= K,1

K,1

, k= K,1 } and relative estimates 

(X
*

)={q(X k

*
), q= K,1 , k= K,1

K,1

},  k(X) =
o

k

*

k

o

kk

ff

 (X) - ff


, k  K, dk =

* o

k kf f :  

F(X*)=

837-   608    21000    746  

279-   850    21000    1006

803-   445    9999      664  

274-   845    20759    1003

, 

d1 =  341.7786, d2 = -11001, d3 =  407.32, d4 = -586.54 

(X*)=

1.0000   0.4048          0  0.2458

0.0486  1.0000           0  1.0079

0.9433  0.0057  1.0000  0.0078

0.0399  0.9864  0.0219  1.0000

. 

From matrix (X*) follows that in private optimum points relative estimates reach the greatest sizes and are 

equal to unit. 

Step 4. Creation of -problem. 

Maximine problem of optimization with the normalized criteria:  

o = 
x

max
k

min  k(X), G(X)0, X  0, 

it will be transformed to a standard problem of mathematical programming (-problem ): 

o = max ,                                                                                            (37) 
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 - 
o*

o

ff

  - fx.x.x.

11

1

2

2

2

11 0390042100310639




0,                                        (38) 

 - 
o*

o

ff

  - fx.x.x.

22

2

2

2

2

11 080040040402




0,                                                (39) 

 - 
o*

o

ff

 - fx.x x.-

33

3

2

221 190528710506




0,                                                (40) 

 - 
o*

o

ff

  - fxx.x.x..-

44

421

2

11 090135020302803




0,                                    (41) 

10000 f2(x)  21000;      0    1,  10x180, 15x270,                                     (42) 

where the vector of unknown has dimension of N+1: X={x1, x2, }. 

As a result of the solution of VPMP (29)-(34) at equivalent criteria and to  -problem corresponding to it (37)-(42) 

we will receive:  

• Xo={Xo, o}={x1=57.7806 , x2= 35.4081, o=-0.4683} - an optimum point which represents design parameters of 

the TS and the maximum relative assessment of o=0.4683; 

• fk(X
o), k= K,1

K,1

 - sizes of criteria (TS characteristics) fk(X
o)={-830    15848   -634   -525}; 

• k(X
o), k= K,1  - sizes of relative estimates of k(X

o)= {0.4933    0.4683    0.4683    0.4683}; 

• o=0.4683 is the maximum bottom level among all relative estimates, measured in relative units: o=min (1(X
o), 

2(X
o), 3(X

o), 4(X
o)) =0.4683, o – also call the guaranteed result in relative units, i.e. k(X

o) and according to 

the characteristic of the fk(X
o) TS it is impossible to improve, without worsening thus other characteristics. 

The received point of Xo is shown in fig. 1. We will show interrelation of all relative estimates (criteria) from 

a point of  X
*

2  in three-dimensional space {x1, x2, } in fig. 2. 

 
Fig. 2. -problem and points of an optimum of VPMP (29)-(34) in three-dimensional system of coordinates of x1, x2, . 
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The point of an optimum of Xo (conditionally the center of a set of points, optimum across Pareto) characterizes, 

on the one hand, optimum parameters of the TS Xo, and about other, guaranteed result of o=0.4683. In fig. 2 look 

interrelation of all criteria (TS characteristics), measured in relative units. 

 

Conclusions 
Thus, in work the methodology of optimization of parameters of difficult technical system on some set of 

functional characteristics that is one of the most important tasks of the system analysis and design is offered. The 

technology of creation of mathematical model of such system in the form of a vector problem and adoption of the 

optimum decision is presented. For the solution of this problem the methods based on normalization of criteria and 

the principle of guaranteed result are used. Results of the decision are a basis for decision-making on studied technical 

system. This methodology can be used at research, modeling and adoption of the optimum decision for a wide class 

of technical and other tasks. 
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